v-Ha-ras mitogenic signaling through superoxide and derived reactive oxygen species.

نویسندگان

  • Ji-Qin Yang
  • Garry R Buettner
  • Frederick E Domann
  • Qiang Li
  • John F Engelhardt
  • Christine Darby Weydert
  • Larry W Oberley
چکیده

The ras proto-oncogene is frequently mutated in human tumors and functions to constitutively stimulate signal transduction cascades, resulting in unchecked proliferation and malignant transformation. In certain cells, superoxide functions as a signal-transduction messenger, mediating the downstream effects of ras and rac. We demonstrated previously that v-Ha-ras-transfected rat kidney epithelial cells (RECs) overproduced superoxide anion and that this superoxide production was mediated by ras. In the present study, we further demonstrated that v-Ha-ras overexpression transformed immortal nonmalignant RECs into malignant cancer cells; v-Ha-ras-transfected cells formed clones in soft agar, had high plating efficiency, and formed tumors in nude mice. Our data suggest that superoxide radical plays a role in ras-induced transformation; modulation of intracellular superoxide level by overexpression of manganese-containing superoxide dismutase or copper- and zinc-containing superoxide dismutase inhibited ras-induced transformation, as evidenced by in vitro studies of plating efficiency and by in vivo studies of tumor formation in nude mice. Overexpression of catalase (CAT) alone was found to have little effect on tumor cell growth, but overexpression of glutathione peroxidase 1 (GPx1) completely suppressed tumor cell growth in nude mice. This finding suggests that peroxides removed by GPx1, but not by CAT, are also involved in ras-induced transformation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opposing functions of Ki- and Ha-Ras genes in the regulation of redox signals

Ras p21 signaling is involved in multiple aspects of growth, differentiation, and stress response [1-2]. There is evidence pointing to superoxides as relays of Ras signaling messages. Chemicals with antioxidant activity suppress Ras-induced DNA synthesis. The inhibition of Ras significantly reduces the production of superoxides by the NADPH-oxidase complex [3]. Kirsten and Harvey are nonallelic...

متن کامل

Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts.

The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation. We found a remarkable example in vivo of amplification of this circuitry in fib...

متن کامل

Protection of human endothelial cells from oxidative stress: role of Ras-ERK1/2 signaling.

BACKGROUND Reactive oxygen species play a critical role in inducing apoptosis. The small GTPase p21 Ras and the ERK1/2 MAPK have been proposed as key regulators of the signaling cascade triggered by oxidative stress (H2O2). Harvey-Ras (Ha-Ras) and Kirsten-Ras (Ki-Ras) isoforms are so far functionally indistinguishable, because they activate the same downstream effectors, including ERK1/2. Moreo...

متن کامل

Role of Ras-ERK1/2 Signaling

Background—Reactive oxygen species play a critical role in inducing apoptosis. The small GTPase p21 Ras and the ERK1/2 MAPK have been proposed as key regulators of the signaling cascade triggered by oxidative stress (H2O2). Harvey-Ras (Ha-Ras) and Kirsten-Ras (Ki-Ras) isoforms are so far functionally indistinguishable, because they activate the same downstream effectors, including ERK1/2. Moreo...

متن کامل

Differential activation of mitogenic signaling pathways in aortic smooth muscle cells deficient in superoxide dismutase isoforms.

OBJECTIVE Reactive oxygen species (ROS) integrate cellular signaling pathways involved in aortic smooth muscle cell (SMC) proliferation and migration associated with atherosclerosis. However, the effect of subcellular localization of ROS on SMC mitogenic signaling is not yet fully understood. METHODS AND RESULTS We used superoxide dismutase (SOD)-deficient mouse aortic SMCs to address the rol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular carcinogenesis

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 2002